Ceftazidime–Avibactam Resistance Mutations V240G, D179Y, and D179Y/T243M in KPC-3 β-Lactamase Do Not Alter Cefpodoxime–ETX1317 Susceptibility
Author(s) -
Adam B. Shapiro,
Samir H. Moussa,
Nicole Carter,
Ning Gao,
Alita A. Miller
Publication year - 2020
Publication title -
acs infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.324
H-Index - 39
ISSN - 2373-8227
DOI - 10.1021/acsinfecdis.0c00575
Subject(s) - cefpodoxime , avibactam , ceftazidime , microbiology and biotechnology , biology , ceftazidime/avibactam , prodrug , antibacterial agent , chemistry , antibiotics , pharmacology , bacteria , genetics , pseudomonas aeruginosa
Mutations in KPC-2 and KPC-3 β-lactamase can confer resistance to the β-lactam/β-lactamase inhibitor antibacterial intravenous drug combination ceftazidime-avibactam, introduced in 2015. Avibactam was the first of the diazabicyclooctane class of non-β-lactam β-lactamase inhibitors to be approved for clinical use. The orally bioavailable prodrug ETX0282 of the diazabicyclooctane β-lactamase inhibitor ETX1317 is in clinical development in combination with the oral β-lactam prodrug cefpodoxime proxetil for use against complicated urinary tract infections. We investigated the effects of 3 ceftazidime-avibactam resistance mutations in KPC-3 (V240G, D179Y, and D179Y/T243M) on the ability of ETX1317 to overcome KPC-3-induced cefpodoxime resistance. Isogenic Escherichia coli strains, each expressing the wild-type or a mutant KPC-3 at similar levels, retained susceptibility to cefpodoxime-ETX1317 (1:2) with essentially identical minimal inhibitory concentrations of 0.125-0.25 μg/mL cefpodoxime. The KPC-3 mutations had little or no effect on the k inac / K i values for inhibition by each of 3 diazabicyclooctanes: avibactam, durlobactam (ETX2514), and ETX1317. The K M values for hydrolysis of cefpodoxime were similar for all 4 variants, but the k ca values of the D179Y and D179Y/T243M variants were much lower than those of the wild-type and V240G mutant enzymes. All 4 KPC-3 variants formed stable, reversibly covalent complexes with ETX1317, but dissociation of ETX1317 was much slower from the D179Y and D179Y/T243M mutants than from the wild-type and V240G mutant enzymes. Thus, the KPC-3 variants examined here that cause resistance to ceftazidime-avibactam do not cause resistance to cefpodoxime-ETX1317.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom