Druggable Hot Spots in the Schistosomiasis Cathepsin B1 Target Identified by Functional and Binding Mode Analysis of Potent Vinyl Sulfone Inhibitors
Author(s) -
Adéla Jílková,
Petra Rubešová,
Jindřich Fanfrlík,
Pavla Fajtová,
Pavlína Řezáčová,
J. Brynda,
Martin Lepšı́k,
Helena MertlíkováKaiserová,
Cory D. Emal,
Adam R. Renslo,
William Roush,
Martin Horn,
Conor R. Caffrey,
Michael A. Mares
Publication year - 2020
Publication title -
acs infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.324
H-Index - 39
ISSN - 2373-8227
DOI - 10.1021/acsinfecdis.0c00501
Subject(s) - druggability , peptidomimetic , cathepsin b , virtual screening , sulfone , chemistry , drug discovery , cathepsin d , biology , phage display , biochemistry , stereochemistry , enzyme , peptide , gene , polymer chemistry
Schistosomiasis, a parasitic disease caused by blood flukes of the genus Schistosoma , is a global health problem with over 200 million people infected. Treatment relies on just one drug, and new chemotherapies are needed. Schistosoma mansoni cathepsin B1 (SmCB1) is a critical peptidase for the digestion of host blood proteins and a validated drug target. We screened a library of peptidomimetic vinyl sulfones against SmCB1 and identified the most potent SmCB1 inhibitors reported to date that are active in the subnanomolar range with second order rate constants ( k 2nd ) of ∼2 × 10 5 M -1 s -1 . High resolution crystal structures of the two best inhibitors in complex with SmCB1 were determined. Quantum chemical calculations of their respective binding modes identified critical hot spot interactions in the S1' and S2 subsites. The most potent inhibitor targets the S1' subsite with an N -hydroxysulfonic amide moiety and displays favorable functional properties, including bioactivity against the pathogen, selectivity for SmCB1 over human cathepsin B, and reasonable metabolic stability. Our results provide structural insights for the rational design of next-generation SmCB1 inhibitors as potential drugs to treat schistosomiasis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom