z-logo
open-access-imgOpen Access
Discovery and Functional Characterization of a Yeast Sugar Alcohol Phosphatase
Author(s) -
Yifan Xu,
Wenyun Lu,
Jonathan C. Chen,
Sarah Johnson,
Patrick A. Gibney,
David G. Thomas,
Greg Brown,
Amanda L. May,
Shawn R. Campagna,
Alexander F. Yakunin,
David Botstein,
Joshua D. Rabinowitz
Publication year - 2018
Publication title -
acs chemical biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 111
eISSN - 1554-8937
pISSN - 1554-8929
DOI - 10.1021/acschembio.8b00804
Subject(s) - sorbitol , phosphatase , biochemistry , sugar phosphates , yeast , sugar , sugar alcohol , xylitol , glucose 6 phosphate isomerase , chemistry , phosphate , polyol , saccharomyces cerevisiae , glycerol , enzyme , biology , fermentation , organic chemistry , polyurethane
Sugar alcohols (polyols) exist widely in nature. While some specific sugar alcohol phosphatases are known, there is no known phosphatase for some important sugar alcohols (e.g., sorbitol-6-phosphate). Using liquid chromatography-mass spectrometry-based metabolomics, we screened yeast strains with putative phosphatases of unknown function deleted. We show that the yeast gene YNL010W, which has close homologues in all fungi species and some plants, encodes a sugar alcohol phosphatase. We term this enzyme, which hydrolyzes sorbitol-6-phosphate, ribitol-5-phosphate, and (d)-glycerol-3-phosphate, polyol phosphatase 1 or PYP1. Polyol phosphates are structural analogs of the enediol intermediate of phosphoglucose isomerase (Pgi). We find that sorbitol-6-phosphate and ribitol-5-phosphate inhibit Pgi and that Pyp1 activity is important for yeast to maintain Pgi activity in the presence of environmental sugar alcohols. Pyp1 expression is strongly positively correlated with yeast growth rate, presumably because faster growth requires greater glycolytic and accordingly Pgi flux. Thus, yeast express the previously uncharacterized enzyme Pyp1 to prevent inhibition of glycolysis by sugar alcohol phosphates. Pyp1 may be useful for engineering sugar alcohol production.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom