Enzymatic Synthesis of the C-Glycosidic Moiety of Nogalamycin R
Author(s) -
Vilja Siitonen,
Benjamin Nji Wandi,
Akke-Pekka Törmänen,
Mikko MetsäKetelä
Publication year - 2018
Publication title -
acs chemical biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 111
eISSN - 1554-8937
pISSN - 1554-8929
DOI - 10.1021/acschembio.8b00658
Subject(s) - glycosidic bond , aglycone , aminosugar , stereochemistry , chemistry , glycosylation , glycosyl , moiety , biochemistry , transferase , glycoside hydrolase , enzyme , mutarotation , glycoside , glucosamine
Carbohydrate moieties are essential for the biological activity of anthracycline anticancer agents such as nogalamycin, which contains l-nogalose and l-nogalamine units. The former of these is attached through a canonical O-glycosidic linkage, but the latter is connected via an unusual dual linkage composed of C-C and O-glycosidic bonds. In this work, we have utilized enzyme immobilization techniques and synthesized l-rhodosamine-thymidine diphosphate (TDP) from α-d-glucose-1-TDP using seven enzymes. In a second step, we assembled the dual linkage system by attaching the aminosugar to an anthracycline aglycone acceptor using the glycosyl transferase SnogD and the α-ketoglutarate dependent oxygenase SnoK. Furthermore, our work indicates that the auxiliary P450-type protein SnogN facilitating glycosylation is surprisingly associated with attachment of the neutral sugar l-nogalose rather than the aminosugar l-nogalamine in nogalamycin biosynthesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom