z-logo
open-access-imgOpen Access
Development of a Multiplexed Activity-Based Protein Profiling Assay to Evaluate Activity of Endocannabinoid Hydrolase Inhibitors
Author(s) -
Antonius P. A. Janssen,
Daan van der Vliet,
Alexander T. Bakker,
Ming Jiang,
Sebastian Grimm,
Giuseppe Campiani,
Stefania Butini,
Mario van der Stelt
Publication year - 2018
Publication title -
acs chemical biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 111
eISSN - 1554-8937
pISSN - 1554-8929
DOI - 10.1021/acschembio.8b00534
Subject(s) - serine hydrolase , serine , endocannabinoid system , biochemistry , proteome , hydrolase , chemistry , enzyme , fatty acid amide hydrolase , biology , cannabinoid receptor , receptor , agonist
Endocannabinoids, an important class of signaling lipids involved in health and disease, are predominantly synthesized and metabolized by enzymes of the serine hydrolase superfamily. Activity-based protein profiling (ABPP) using fluorescent probes, such as fluorophosphonate (FP)-TAMRA and β-lactone-based MB064, enables drug discovery activities for serine hydrolases. FP-TAMRA and MB064 have distinct, albeit partially overlapping, target profiles but cannot be used in conjunction due to overlapping excitation/emission spectra. We therefore synthesized a novel FP-probe with a green BODIPY as a fluorescent tag and studied its labeling profile in mouse proteomes. Surprisingly, we found that the reporter tag plays an important role in the binding potency and selectivity of the probe. A multiplexed ABPP assay was developed in which a probe cocktail of FP-BODIPY and MB064 visualized most endocannabinoid serine hydrolases in mouse brain proteomes in a single experiment. The multiplexed ABPP assay was employed to profile endocannabinoid hydrolase inhibitor activity and selectivity in the mouse brain.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom