z-logo
open-access-imgOpen Access
Trisaccharides of Phenolic Glycolipids Confer Advantages to Pathogenic Mycobacteria through Manipulation of Host-Cell Pattern-Recognition Receptors
Author(s) -
Ainhoa Arbués,
Wladimir Malaga,
Patricia Constant,
Christophe Guilhot,
Jacques Prandi,
Catherine AstarieDequeker
Publication year - 2016
Publication title -
acs chemical biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 111
eISSN - 1554-8937
pISSN - 1554-8929
DOI - 10.1021/acschembio.6b00568
Subject(s) - mycobacterium leprae , biology , mycobacterium bovis , glycolipid , tlr2 , mycobacterium , microbiology and biotechnology , immune system , mycobacterium tuberculosis , pattern recognition receptor , receptor , tuberculosis , immunology , immunity , innate immune system , biochemistry , bacteria , leprosy , genetics , medicine , pathology
Despite mycobacterial pathogens continue to be a threat to public health, the mechanisms that allow them to persist by modulating the host immune response are poorly understood. Among the factors suspected to play a role are phenolic glycolipids (PGLs), produced notably by the major pathogenic species such as Mycobacterium tuberculosis and Mycobacterium leprae. Here, we report an original strategy combining genetic reprogramming of the PGL pathway in Mycobacterium bovis BCG and chemical synthesis to examine whether sugar variations in the species-specific PGLs have an impact on pattern recognition receptors (PRRs) and the overall response of infected cells. We identified two distinct properties associated with the trisaccharide domains found in the PGLs from M. leprae and M. tuberculosis. First, the sugar moiety of PGL-1 from M. leprae is unique in its capacity to bind the lectin domain of complement receptor 3 (CR3) for efficient invasion of human macrophages. Second, the trisaccharide domain of the PGLs from M. tuberculosis and M. leprae share the capacity to inhibit Toll-like receptor 2 (TLR2)-triggered NF-κB activation, and thus the production of inflammatory cytokines. Consistently, PGL-1 was found to also bind isolated TLR2. By contrast, the simpler sugar domains of PGLs from M. bovis and Mycobacterium ulcerans did not exhibit such activities. In conclusion, the production of extended saccharide domains on PGLs dictates their recognition by host PRRs to enhance mycobacterial infectivity and subvert the host immune response.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom