z-logo
open-access-imgOpen Access
Indolin-2-one Nitroimidazole Antibiotics Exhibit an Unexpected Dual Mode of Action
Author(s) -
Till Reinhardt,
Kyu M. Lee,
Lukas Niederegger,
Corinna R. Hess,
Stephan A. Sieber
Publication year - 2022
Publication title -
acs chemical biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 111
eISSN - 1554-8937
pISSN - 1554-8929
DOI - 10.1021/acschembio.2c00462
Subject(s) - nitroimidazole , topoisomerase , chemistry , topoisomerase iv , dna damage , mode of action , bacteria , dna , biochemistry , dna gyrase , microbiology and biotechnology , biology , escherichia coli , genetics , organic chemistry , gene
Nitroimidazoles such as metronidazole are used as anti-infective drugs against anaerobic bacteria. Upon in vivo reduction of the nitro group, reactive radicals damage DNA and proteins in the absence of oxygen. Unexpectedly, a recent study of nitroimidazoles linked to an indolin-2-one substituent revealed potent activities against aerobic bacteria. This suggests a different, yet undiscovered mode of action (MoA). To decipher this MoA, we first performed whole proteome analysis of compound-treated cells, revealing an upregulation of bacteriophage-associated proteins, indicative of DNA damage. Since DNA binding of the compound was not observed, we applied activity-based protein profiling (ABPP) for direct target discovery. Labeling studies revealed topoisomerase IV, an essential enzyme for DNA replication, as the most enriched hit in pathogenic Staphylococcus aureus cells. Subsequent topoisomerase assays confirmed the inhibition of DNA decatenation in the presence of indolin-2-one nitroimidazole with an activity comparable to ciprofloxacin, a known inhibitor of this enzyme. Furthermore, we determined significantly increased redox potentials of indolin-2-one nitroimidazoles compared to classic 5-nitroimidazoles such as metronidazole, which facilitates in vivo reduction. Overall, this study unravels that indolin-2-one-functionalized nitroimidazoles feature an unexpected dual MoA: first, the direct inhibition of the topoisomerase IV and second the classic nitroimidazole MoA of reductive bioactivation leading to damaging reactive species. Importantly, this dual MoA impairs resistance development. Given the clinical application of this compound class, the new mechanism could be a starting point to mitigate resistance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here