z-logo
open-access-imgOpen Access
Potent Inhibitor of Human Trypsins from the Aeruginosin Family of Natural Products
Author(s) -
Muhammad N. Ahmed,
Matti Wahlsten,
Jouni Jokela,
Matthias Nees,
UlfHåkan Stenman,
Danillo Oliveira Alvarenga,
Tomas Strandin,
Kaarina Sivonen,
Antti Poso,
Perttu Permi,
Mikko MetsäKetelä,
Hannu Koistinen,
David P. Fewer
Publication year - 2021
Publication title -
acs chemical biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 111
eISSN - 1554-8937
pISSN - 1554-8929
DOI - 10.1021/acschembio.1c00611
Subject(s) - proteases , serine , trypsin , serine protease , biology , biochemistry , protease , enzyme , gene , gene family , genome
Serine proteases regulate many physiological processes and play a key role in a variety of cancers. Aeruginosins are a family of natural products produced by cyanobacteria that exhibit pronounced structural diversity and potent serine protease inhibition. Here, we sequenced the complete genome of Nodularia sphaerocarpa UHCC 0038 and identified the 43.7 kb suomilide biosynthetic gene cluster. Bioinformatic analysis demonstrated that suomilide belongs to the aeruginosin family of natural products. We identified 103 complete aeruginosin biosynthetic gene clusters from 12 cyanobacterial genera and showed that they encode an unexpected chemical diversity. Surprisingly, purified suomilide inhibited human trypsin-2 and -3, with IC 50 values of 4.7 and 11.5 nM, respectively, while trypsin-1 was inhibited with an IC 50 of 104 nM. Molecular dynamics simulations suggested that suomilide has a long residence time when bound to trypsins. This was confirmed experimentally for trypsin-1 and -3 (residence times of 1.5 and 57 min, respectively). Suomilide also inhibited the invasion of aggressive and metastatic PC-3M prostate cancer cells without affecting cell proliferation. The potent inhibition of trypsin-3, together with a long residence time and the ability to inhibit prostate cancer cell invasion, makes suomilide an attractive drug lead for targeting cancers that overexpress trypsin-3. These results substantially broaden the genetic and chemical diversity of the aeruginosin family and suggest that aeruginosins may be a source of selective inhibitors of human serine proteases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom