z-logo
open-access-imgOpen Access
Pharmacological Advantage of SIRT2-Selective versus pan-SIRT1–3 Inhibitors
Author(s) -
Jun Young Hong,
Irma Fernández,
Ananya Anmangandla,
Xuan Lü,
Jessica Jingyi Bai,
Hening Lin
Publication year - 2021
Publication title -
acs chemical biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 111
eISSN - 1554-8937
pISSN - 1554-8929
DOI - 10.1021/acschembio.1c00331
Subject(s) - sirt2 , sirtuin , chemistry , computational biology , biology , pharmacology , biochemistry , enzyme , nad+ kinase
Because of their involvement in various biological pathways, the sirtuin enzyme family members SIRT1, SIRT2, and SIRT3 play both tumor-promoting and tumor-suppressing roles, based on the context and experimental conditions. Thus, an interesting question is whether inhibiting one of them or inhibiting all of them would be better for treating cancers. Pharmacologically, this is difficult to address, due in part to potential off-target effects of different compounds. Compounds with almost identical properties but differing in SIRT1-3 selectivity will be useful for addressing this question. Here, we have developed a pan SIRT1-3 inhibitor (NH4-6) and a SIRT2-selective inhibitor (NH4-13) with very similar chemical structures, with the only difference being the substitution of an ester bond to an amide bond. Such a minimal difference allows us to accurately compare the anticancer effect of pan SIRT1-3 inhibition and SIRT2-selective inhibition in cellular and mouse models. NH4-6 showed stronger cytotoxicity than NH4-13 in cancer cell lines. In mice, both inhibitors showed similar anticancer efficacy. However, NH4-6 is toxic to mice, which hinders the use of higher dosages. These results highlight the advantage of SIRT2-selective inhibitors as potential anticancer therapeutics.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom