z-logo
open-access-imgOpen Access
Triangular in Vivo Self-Assembling Coiled-Coil Protein Origami
Author(s) -
Sabina Božič Abram,
Helena Gradišar,
Jana Aupič,
Adam Round,
Roman Jerala
Publication year - 2021
Publication title -
acs chemical biology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 111
eISSN - 1554-8937
pISSN - 1554-8929
DOI - 10.1021/acschembio.0c00812
Subject(s) - coiled coil , linker , dna origami , polyhedron , protein design , nanoscopic scale , template , self assembly , nanotechnology , materials science , dimer , nanostructure , chemistry , protein structure , computer science , biochemistry , mathematics , combinatorics , organic chemistry , operating system
Coiled-coil protein origami (CCPO) polyhedra are designed self-assembling nanostructures constructed from coiled coil (CC)-forming modules connected into a single chain. For testing new CCPO building modules, simpler polyhedra could be used that should maintain most features relevant to larger scaffolds. We show the design and characterization of nanoscale single-chain triangles, composed of six concatenated parallel CC dimer-forming segments connected by flexible linker peptides. The polypeptides self-assembled in bacteria in agreement with the design, and the shape of the polypeptides was confirmed with small-angle X-ray scattering. Fusion with split-fluorescent protein domains was used as a functional assay in bacteria, based on the discrimination between the correctly folded and misfolded nanoscale triangles comprising correct, mismatched, or truncated modules. This strategy was used to evaluate the optimal size of linkers between CC segments which comprised eight amino acid residues.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom