z-logo
open-access-imgOpen Access
Influence of Promotion on the Growth of Anchored Colloidal Iron Oxide Nanoparticles during Synthesis Gas Conversion
Author(s) -
Nynke A. Krans,
Jan Weber,
Wouter Van den Bosch,
Jovana Zečević,
Petra E. de Jongh,
Krijn P. de Jong
Publication year - 2020
Publication title -
acs catalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.898
H-Index - 198
ISSN - 2155-5435
DOI - 10.1021/acscatal.9b04380
Subject(s) - catalysis , nanoparticle , inorganic chemistry , chemistry , selectivity , zeolite , fischer–tropsch process , iron oxide , sulfur , oxide , iron oxide nanoparticles , materials science , organic chemistry , nanotechnology
Using colloidal iron oxide nanoparticles with organic ligands, anchored in a separate step from the supports, has been shown to be beneficial to obtain homogeneously distributed metal particles with a narrow size distribution. Literature indicates that promoting these particles with sodium and sulfur creates an active Fischer-Tropsch catalyst to produce olefins, while further adding an H-ZSM-5 zeolite is an effective way to obtain aromatics. This research focused on the promotion of iron oxide colloids with sodium and sulfur using an inorganic ligand exchange followed by the attachment to H-ZSM-5 zeolite crystals. The catalyst referred to as FeP/Z, which consists of iron particles with inorganic ligands attached to a H-ZSM-5 catalyst, was compared to an unpromoted Fe/Z catalyst and an Fe/Z-P catalyst, containing the colloidal nanoparticles with organic ligands, promoted after attachment. A low CO conversion was observed on both FeP/Z and Fe/Z-P, originating from an overpromotion effect for both catalysts. However, when both promoted catalysts were washed (FeP/Z-W and Fe/Z-P-W) to remove the excess of promoters, the activity was much higher. Fe/Z-P-W simultaneously achieved low selectivity toward methane as part of the promoters were still present after washing, whereas for FeP/Z-W the majority of promoters was removed upon washing, which increased the methane selectivity. Moreover, due to the addition of Na+S promoters, the iron nanoparticles in the FeP/Z(-W) catalysts had grown considerably during catalysis, while those in Fe/Z-P(-W) and Fe/Z(-W) remained relatively stable. Lastly, as a large broadening of particle sizes for the used FeP/Z-W was found, where particle sizes had both increased and decreased, Ostwald ripening is suggested for particle growth accelerated by the presence of the promoters.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom