z-logo
open-access-imgOpen Access
Group Transfer to an Aliphatic Bond: A Biomimetic Study Inspired by Nonheme Iron Halogenases
Author(s) -
Amy Timmins,
Matthew G. Quesne,
Tomasz Borowski,
Sam P. de Visser
Publication year - 2018
Publication title -
acs catalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.898
H-Index - 198
ISSN - 2155-5435
DOI - 10.1021/acscatal.8b01673
Subject(s) - chemistry , ethylbenzene , reactivity (psychology) , catalysis , hydroxylation , substituent , substrate (aquarium) , organic chemistry , combinatorial chemistry , stereochemistry , medicine , oceanography , alternative medicine , pathology , enzyme , geology
In this work, we predict a group-transfer reaction to an aliphatic substrate on a biomimetic nonheme iron center based on the structural and functional properties of nonheme iron halogenases. Transferring groups other than halogens to C–H bonds on the same catalytic center would improve the versatility and applicability of nonheme iron halogenases and enhance their use in biotechnology; however, few studies have been reported on this matter. Furthermore, very few biomimetic models are known that are able to transfer halogens or other groups to aliphatic C–H bonds. To gain insight into group transfer to an aliphatic C–H bond, we performed a detailed computational study on a biomimetic nonheme iron complex and studied the reactivity patterns with a model substrate (ethylbenzene). In particular, we investigated the reaction mechanisms of [FeIV(O)(TPA)X]+, TPA = tris(2-pyridylmethy1)amine, and X = Cl, NO2, N3 with ethylbenzene leading to 1-phenylethanol and 1-phenyl-1-X-ethane products. Interestingly, we find...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom