z-logo
open-access-imgOpen Access
From 3D to 2D Co and Ni Oxyhydroxide Catalysts: Elucidation of the Active Site and Influence of Doping on the Oxygen Evolution Activity
Author(s) -
Vladimir Tripković,
Heine Anton Hansen,
Tejs Vegge
Publication year - 2017
Publication title -
acs catalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.898
H-Index - 198
ISSN - 2155-5435
DOI - 10.1021/acscatal.7b02712
Subject(s) - catalysis , doping , transition metal , dopant , conductivity , oxide , oxygen , materials science , inorganic chemistry , chemical engineering , chemistry , metallurgy , organic chemistry , optoelectronics , engineering
Layered oxyhydroxides (ox-hys) of Ni and Co are among the most active catalysts for oxygen evolution in alkaline media. Their activities can be further tuned by delamination into single-layer oxide sheets or by means of doping. The active site for the reaction and how doping and delamination promote the intrinsic activity, however, remain elusive. To shed light on these open questions, we have undertaken a systematic analysis of the stability, catalytic activity, and electronic conductivity of Ni and Co ox-hys ranging from bulk (3D) to single-layer (2D) catalysts. In both cases, we investigate the role of terrace and edge sites and use stability, catalytic activity, and electronic conductivity as evaluation criteria to pinpoint the best catalysts. We arrive at several important conclusions: the ox-hy surface is fully oxidized under oxygen evolution conditions, bulk terraces are ostensibly the most active sites, and Ni ox-hy sheets are more electronically conductive in comparison to their Co equivalents. F...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom