Understanding the Molecular Mechanism of the Ala-versus-Gly Concept Controlling the Product Specificity in Reactions Catalyzed by Lipoxygenases: A Combined Molecular Dynamics and QM/MM Study of Coral 8R-Lipoxygenase
Author(s) -
Patricia Saura,
Reynier Suardíaz,
Laura Masgrau,
Àngels GonzálezLafont,
Edina Rosta,
José M. Lluch
Publication year - 2017
Publication title -
acs catalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.898
H-Index - 198
ISSN - 2155-5435
DOI - 10.1021/acscatal.7b00842
Subject(s) - chemistry , arachidonic acid , lipoxygenase , molecular mechanics , stereochemistry , molecular dynamics , qm/mm , alkb , enzyme , biochemistry , residue (chemistry) , active site , catalysis , computational chemistry , gene , dna repair
Lipoxygenases (LOXs) are a family of enzymes that catalyze the highly specific hydroperoxidation of polyunsaturated fatty acids, such as arachidonic acid. Different stereo- or/and regioisomer hydroperoxidation products lead later to different metabolites that exert opposite physiological effects in the animal body and play a central role in inflammatory processes. The Gly-Ala switch of a single residue is crucial for the stereo- and regiocontrol in many lipoxygenases. Herein, we have combined molecular dynamics simulations with quantum mechanics/molecular mechanics calculations to study the hydrogen abstraction step and the molecular oxygen addition step of the hydroperoxidation reaction of arachidonic acid catalyzed by both wild-type Coral 8R-LOX and its Gly427Ala mutant. We have obtained a detailed molecular understanding of this Ala-versus-Gly concept. In wild type, molecular oxygen adds to C8 of arachidonic acid with an R stereochemistry. In the mutant, Ala427 pushes Leu385, blocks the region over C8,...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom