Influence of Nanoscale Intimacy and Zeolite Micropore Size on the Performance of Bifunctional Catalysts forn-Heptane Hydroisomerization
Author(s) -
Jogchum Oenema,
Justine Harmel,
Roxana Pérez Vélez,
Mark J. Meijerink,
Willem Eijsvogel,
Ali Poursaeidesfahani,
Thijs J. H. Vlugt,
Jovana Zečević,
Krijn P. de Jong
Publication year - 2020
Publication title -
acs catalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.898
H-Index - 198
ISSN - 2155-5435
DOI - 10.1021/acscatal.0c03138
Subject(s) - zeolite , bifunctional , catalysis , microporous material , selectivity , heptane , materials science , chemical engineering , nanoparticle , nanoscopic scale , microscale chemistry , inorganic chemistry , chemistry , nanotechnology , organic chemistry , composite material , mathematics education , mathematics , engineering
In this study, Pt nanoparticles on zeolite/γ-Al 2 O 3 composites (50/50 wt) were located either in the zeolite or on the γ-Al 2 O 3 binder, hereby varying the average distance (intimacy) between zeolite acid sites and metal sites from "closest" to "nanoscale". The catalytic performance of these catalysts was compared to physical mixtures of zeolite and Pt/γ-Al 2 O 3 powders, which provide a "microscale" distance between sites. Several beneficial effects on catalytic activity and selectivity for n -heptane hydroisomerization were observed when Pt nanoparticles are located on the γ-Al 2 O 3 binder in nanoscale proximity with zeolite acid sites, as opposed to Pt nanoparticles located inside zeolite crystals. On ZSM-5-based catalysts, mostly monobranched isomers were produced, and the isomer selectivity of these catalysts was almost unaffected with an intimacy ranging from closest to microscale, which can be attributed to the high diffusional barriers of branched isomers within ZSM-5 micropores. For composite catalysts based on large-pore zeolites (zeolite Beta and zeolite Y), the activity and selectivity benefitted from the nanoscale intimacy with Pt, compared to both the closest and microscale intimacies. Intracrystalline gradients of heptenes as reaction intermediates are likely contributors to differences in activity and selectivity. This paper aims to provide insights into the influence of the metal-acid intimacy in bifunctional catalysts based on zeolites with different framework topologies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom