z-logo
open-access-imgOpen Access
Recent Developments in Enantioselective Transition Metal Catalysis Featuring Attractive Noncovalent Interactions between Ligand and Substrate
Author(s) -
Alexander Fanourakis,
Philip J. Docherty,
Padon Chuentragool,
Robert J. Phipps
Publication year - 2020
Publication title -
acs catalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.898
H-Index - 198
ISSN - 2155-5435
DOI - 10.1021/acscatal.0c02957
Subject(s) - enantioselective synthesis , enantiopure drug , non covalent interactions , steric effects , chemistry , nanotechnology , ligand (biochemistry) , combinatorial chemistry , catalysis , materials science , organic chemistry , molecule , hydrogen bond , receptor , biochemistry
Enantioselective transition metal catalysis is an area very much at the forefront of contemporary synthetic research. The development of processes that enable the efficient synthesis of enantiopure compounds is of unquestionable importance to chemists working within the many diverse fields of the central science. Traditional approaches to solving this challenge have typically relied on leveraging repulsive steric interactions between chiral ligands and substrates in order to raise the energy of one of the diastereomeric transition states over the other. By contrast, this Review examines an alternative tactic in which a set of attractive noncovalent interactions operating between transition metal ligands and substrates are used to control enantioselectivity. Examples where this creative approach has been successfully applied to render fundamental synthetic processes enantioselective are presented and discussed. In many of the cases examined, the ligand scaffold has been carefully designed to accommodate these attractive interactions, while in others, the importance of the critical interactions was only elucidated in subsequent computational and mechanistic studies. Through an exploration and discussion of recent reports encompassing a wide range of reaction classes, we hope to inspire synthetic chemists to continue to develop asymmetric transformations based on this powerful concept.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom