Supported Ag Nanoparticles and Clusters for CO Oxidation: Size Effects and Influence of the Silver–Oxygen Interactions
Author(s) -
Maximilian Lamoth,
Milivoj Plodinec,
Ludwig Scharfenberg,
Sabine Wrabetz,
Frank Girgsdies,
Travis E. Jones,
Frank Rosowski,
Raimund Horn,
Robert Schlögl,
Elias Frei
Publication year - 2019
Publication title -
acs applied nano materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.227
H-Index - 29
ISSN - 2574-0970
DOI - 10.1021/acsanm.9b00344
Subject(s) - corundum , particle size , adsorption , nanoparticle , catalysis , particle (ecology) , oxygen , materials science , chemical engineering , nanotechnology , inorganic chemistry , chemistry , metallurgy , organic chemistry , oceanography , geology , engineering
Supported Ag catalysts on silica and corundum have been synthesized applying an improved impregnation technique. The resulting Ag particle sizes can be divided into three categories concerning: (I) bulk-like, (II) nanoparticles of 1-6 nm, and (III) in situ created Ag clusters below 1 nm. Ag nanoparticles and bulk-like Ag are investigated concerning their pretreatment dependence for CO oxidation showing that harsher pretreatment conditions need to be applied for smaller particle sizes, based on their tendency to form Ag2CO3. A particle size effect for Ag in oxidation reactions is investigated using CO oxidation as a test reaction. The CO oxidation performance is increasing with decreasing particle size with Ag clusters showing the highest activity. A novel method based on the adsorption of ethylene (C2H4) as sensor molecule is further used to discriminate the silver-oxygen (Ag-O) interaction strength of bulk-like Ag, Ag nanoparticles, and Ag clusters, showing a distinct Ag-O chemistry for the three individual particle size regimes. By application of C2H4 breakthrough curve measurements, the available Ag surface area is determined which enables a correlation of Ag surface area and CO oxidation rate. Correlations of Ag-O interaction strength, Ag surface area, and CO oxidation activity are discussed within the scope of this work.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom