Nanoporous Fluorinated Metal–Organic Framework-Based Membranes for CO2 Capture
Author(s) -
Valeriya Chernikova,
Osama Shekhah,
Youssef Belmabkhout,
Mohamed Eddaoudi
Publication year - 2020
Publication title -
acs applied nano materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.227
H-Index - 29
ISSN - 2574-0970
DOI - 10.1021/acsanm.0c00909
Subject(s) - nanoporous , membrane , selectivity , metal organic framework , adsorption , materials science , chemical engineering , permeation , substrate (aquarium) , gas separation , porosity , nanotechnology , chemistry , organic chemistry , catalysis , composite material , biochemistry , oceanography , geology , engineering
The search for effective carbon-capture materials has permitted the disclosure and institution of nanoporous fluorinated metal-organic frameworks (MOFs) with a contracted pore system as benchmark CO2-selective adsorbents. Namely, the SIFSIX-3-M (M = Zn, Cu, and Ni) MOF adsorbents, encompassing a periodic arrangement of fluorine moieties in a confined one-dimensional channels, exhibit a remarkable CO2 adsorption-based selectivity over CH4 and H-2 in various industrially related gas mixtures. Here, we report the successful transplantation/integration of this distinctive CO2 selectivity, distinguishing this class of nanoporous MOF adsorbents to pure MOF membranes for carbon capture. Markedly, the liquid-phase epitaxy (LPE) growth approach permitted, for the first time, the building of continuous, homogeneous, and defect-free MOF membranes based on the SIFSIX-3-M platform, MSiF6(Pyz)(2) with M = Ni or Cu, on a porous alumina substrate. Single and mixed-gas permeation tests revealed that the resulting nanoporous MOF membrane is a CO2-selective membrane, exhibiting the foreseen favorable CO2-selectivity toward carbon dioxide over H-2, and CH4, governed by the CO2-selective adsorption in the functional and contracted channels of the SIFSIX-3-M.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom