z-logo
open-access-imgOpen Access
Formulation of Metal–Organic Framework Inks for the 3D Printing of Robust Microporous Solids toward High-Pressure Gas Storage and Separation
Author(s) -
Jérémy Dhainaut,
Mickaële Bonneau,
Ryota Ueoka,
Kazuyoshi Kanamori,
Shuhei Furukawa
Publication year - 2020
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.9b22257
Subject(s) - microporous material , materials science , gas separation , metal organic framework , chemical engineering , high pressure , nanotechnology , process engineering , organic chemistry , composite material , adsorption , membrane , engineering physics , engineering , genetics , biology , chemistry
The shaping of metal-organic frameworks (MOFs) has become increasingly studied over the past few years, because it represents a major bottleneck toward their further applications at a larger scale. MOF-based macroscale solids should present performances similar to those of their powder counterparts, along with adequate mechanical resistance. Three-dimensional printing is a promising technology as it allows the fast prototyping of materials at the macroscale level; however, the large amounts of added binders have a detrimental effect on the porous properties of the solids. Herein, a 3D printer was modified to prepare a variety of MOF-based solids with controlled morphologies from shear-thinning inks containing 2-hydroxyethyl cellulose. Four benchmark MOFs were tested for this purpose: HKUST-1, CPL-1, ZIF-8, and UiO-66-NH 2 . All solids are mechanically stable with up to 0.6 MPa of uniaxial compression and highly porous with BET specific surface areas lowered by 0 to -25%. Furthermore, these solids were applied to high-pressure hydrocarbon sorption (CH 4 , C 2 H 4 , and C 2 H 6 ), for which they presented a consequent methane gravimetric uptake (UiO-66-NH 2 , ZIF-8, and HKUST-1) and a highly preferential adsorption of ethylene over ethane (CPL-1).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom