High-Performance Polybenzimidazole Membranes for Helium Extraction from Natural Gas
Author(s) -
Xuerui Wang,
Meixia Shan,
Xinlei Liu,
Meng Wang,
Cara M. Doherty,
Dmitrii Osadchii,
Freek Kapteijn
Publication year - 2019
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.9b05548
Subject(s) - membrane , materials science , permeance , helium , natural gas , polymerization , chemical engineering , gas separation , selectivity , extraction (chemistry) , monomer , nanotechnology , membrane technology , polymer , catalysis , chromatography , organic chemistry , composite material , chemistry , biochemistry , engineering
Increasing helium use in research and production processes necessitates separation techniques to secure sufficient supply of this noble gas. Energy-efficient helium production from natural gas is still a big challenge. Membrane gas separation technology could play an important role. Herein, a novel poly( p-phenylene benzobisimidazole) (PBDI) polymeric membrane for helium extraction from natural gas with low He abundance is reported. The membranes were fabricated by a facile interfacial polymerization at room temperature. The thin and defect-free membrane structure was manipulated by the confined polymerization of monomers diffusing through the interface between two immiscible liquids. Both He/CH 4 selectivity and He permeance are competitive over those of other commercial perfluoropolymers. Even at low He content of 1%, separation performance of the PBDI membrane transcended the current upper bound. The unprecedented selectivity (>1000) together with the excellent stability (∼360 h) endows PBDI membranes with a great potential for energy-efficient industrial recovery and production of this precious He resources from reservoirs with low abundance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom