Elucidating the Variable-Temperature Mechanical Properties of a Negative Thermal Expansion Metal–Organic Framework
Author(s) -
Jurn Heinen,
Austin D. Ready,
Thomas D. Bennett,
David Dubbeldam,
Raymond W. Friddle,
Nicholas C. Burtch
Publication year - 2018
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.8b06604
Subject(s) - materials science , thermal expansion , negative thermal expansion , thermal , metal , variable (mathematics) , composite material , thermodynamics , metallurgy , mathematical analysis , mathematics , physics
We report the first experimental study into the thermomechanical and viscoelastic properties of a metal-organic framework (MOF) material. Nanoindentations show a decrease in the Young's modulus, consistent with classical molecular dynamics simulations, and hardness of HKUST-1 with increasing temperature over the 25-100 °C range. Variable-temperature dynamic mechanical analysis reveals significant creep behavior, with a reduction of 56% and 88% of the hardness over 10 min at 25 and 100 °C, respectively. This result suggests that, despite the increased density that results from increasing temperature in the negative thermal expansion MOF, the thermally induced softening due to vibrational and entropic contributions plays a more dominant role in dictating the material's temperature-dependent mechanical behavior.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom