Controlling Molecular Conformation for Highly Efficient and Stable Deep-Blue Copolymer Light-Emitting Diodes
Author(s) -
Iain Hamilton,
Nathan Chander,
Nathan J. Cheetham,
Minwon Suh,
Matthew Dyson,
Xuhua Wang,
Paul N. Stavrinou,
Michael Cass,
Donal D. C. Bradley,
JiSeon Kim
Publication year - 2018
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.8b00243
Subject(s) - polyfluorene , materials science , copolymer , fluorene , exciton , luminescence , polymer , luminous efficacy , oled , diode , homo/lumo , conjugated system , phase (matter) , optoelectronics , photochemistry , molecule , nanotechnology , layer (electronics) , organic chemistry , chemistry , physics , composite material , quantum mechanics
We report a novel approach to achieve deep-blue, high-efficiency, and long-lived solution-processed polymer light-emitting diodes (PLEDs) via a simple molecular level conformation change of an emissive conjugated polymer. We introduce rigid β-phase segments into a 95% fluorene-5% arylamine copolymer emissive layer. The arylamine moieties at low density act as efficient exciton formation sites in PLEDs, whereas the conformational change alters the nature of the dominant luminescence from a broad, charge transfer like emission to a significantly blue-shifted and highly vibronically structured excitonic emission. As a consequence, we observe a significant improvement in the Commission International de L'Eclairage ( x, y) coordinates from (0.149, 0.175) to (0.145, 0.123) while maintaining high efficiency and improved stability. We achieve a peak luminous efficiency, η = 3.60 cd/A, and a luminous power efficiency, η w = 2.44 lm/W, values that represent state-of-the-art performance for single copolymer deep-blue PLEDs. These values are 5-fold better than for otherwise-equivalent, β-phase poly(9,9-dioctylfluorene) PLEDs (0.70 cd/A and 0.38 lm/W). This report represents the first demonstration of the use of molecular conformation as a simple but effective method to control the optoelectronic properties of a fluorene copolymer; previous examples have been confined to homopolymers.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom