Surface-Enhanced, Spatially Offset Raman Spectroscopy (SESORS) in Tissue Analogues
Author(s) -
Steven M. Asiala,
Neil C. Shand,
Karen Faulds,
Duncan Graham
Publication year - 2017
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.7b09197
Subject(s) - raman spectroscopy , materials science , offset (computer science) , microscopy , spectroscopy , surface enhanced raman spectroscopy , optics , raman scattering , analytical chemistry (journal) , chemistry , computer science , physics , chromatography , quantum mechanics , programming language
Surface-enhanced, spatially offset Raman spectroscopy (SESORS) combines the remarkable enhancements in sensitivity afforded by surface-enhanced Raman spectroscopy (SERS) with the non-invasive, subsurface sampling capabilities of spatially offset Raman spectroscopy. Taken together, these techniques show great promise for in vivo Raman measurements. Herein, we present a step forward for this technique, demonstrating SESORS through tissue analogues of six known and varied thicknesses, with a large number of distinct spatial offsets, in a backscattering optical geometry. This is accomplished by spin-coating SERS-active nanoparticles (NPs) on glass slides and monitoring the relative spectral contribution from the NPs and tissue sections, respectively, as a function of both the tissue thickness and the spatial offset of the collection probe. The results show that SESORS outperforms SERS alone for this purpose, the NP signal can be attained at tissue thicknesses of >6.75 mm, and greater tissue thicknesses require greater spatial offsets to maximize the NP signal, all with an optical geometry optimized for utility. This demonstration represents a step forward toward the implementation of SESORS for non-invasive, in vivo analysis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom