Sugar-Terminated Nanoparticle Chaperones Are 102–105 Times Better Than Molecular Sugars in Inhibiting Protein Aggregation and Reducing Amyloidogenic Cytotoxicity
Author(s) -
Nibedita Pradhan,
Shashi Shekhar,
Nihar Ranjan Jana,
Nikhil R. Jana
Publication year - 2017
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.7b01886
Subject(s) - osmolyte , nanoparticle , trehalose , biophysics , sugar , fibril , protein aggregation , cytotoxicity , small molecule , molecule , biochemistry , lysozyme , chemistry , materials science , organic chemistry , in vitro , nanotechnology , biology
Sugar-based osmolyte molecules are known to stabilize proteins under stress, but usually they have poor chaperone performance in inhibiting protein aggregation. Here, we show that the nanoparticle form of sugars molecule can enhance their chaperone performance typically by 10 2 -10 5 imes, compared to molecular sugar. Sugar-based plate-like nanoparticles of 20-40 nm hydrodynamic size have been synthesized by simple heating of acidic aqueous solution of glucose/sucrose/maltose/trehalose. These nanoparticles have excitation-dependent green/yellow/orange emission and surface chemistry identical to the respective sugar molecule. Fibrillation of lysozyme/insulin/amyloid beta in extracellular space, aggregation of mutant huntingtin protein inside model neuronal cell, and cytotoxic effect of fibrils are investigated in the presence of these sugar nanoparticles. We found that sugar nanoparticles are 10 2 -10 5 imes efficient than respective sugar molecules in inhibiting protein fibrillation and preventing cytotoxicity arising of fibrils. We propose that better performance of the nanoparticle form is linked to its stronger binding with fibril structure and enhanced cell uptake. This result suggests that nanoparticle form of osmolyte can be an attractive option in prevention and curing of protein aggregation-derived diseases.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom