Interplay between Long-Range Crystal Order and Short-Range Molecular Interactions Tunes Carrier Mobility in Liquid Crystal Dyes
Author(s) -
Nadine Tchamba Yimga,
Charusheela Ramanan,
Holger Borchert,
Jürgen Parisi,
H. Untenecker,
Peer Kirsch,
Elizabeth von Hauff
Publication year - 2017
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.6b14715
Subject(s) - materials science , range (aeronautics) , chemical physics , crystal (programming language) , liquid crystal , order (exchange) , molecular dynamics , optoelectronics , nanotechnology , computational chemistry , composite material , chemistry , physics , finance , computer science , economics , programming language
We investigated the influence of molecular packing on the optical and electrical properties of the liquid crystalline dye 4,7-bis[5-(2-fluoro-4-pentyl-phenyl)-2-thienyl]-2,1,3-benzothiadiazole (FPPTB). FPPTB is crystalline at room temperature, exhibits a nematic phase at temperatures above 149 °C and is in an isotropic melt at temperatures above 230 °C. Solution processed FPPTB films were subject to thermal annealing through these phase transition temperatures and characterized with X-ray diffraction and polarized optical microscopy. Cooling FPPTB films from the nematic and isotropic phases increased crystal domain size, but also induced local structural variations in the molecular packing of crystalline FPPTB. The decrease in long-range order was correlated with an increase in short-range π-π interactions, leading to changes in molecular aggregation which persisted even when the FPPTB films were cooled to room temperature. Annealing-induced changes in molecular aggregation were confirmed with optical spectroscopy. The carrier mobility in FPPTB films increased over 2 orders of magnitude from (2.2 ± 0.4) × 10 -5 cm 2 V -1 s -1 in as-spun films to μ = (5.0 ± 0.8) × 10 -3 cm 2 V -1 s -1 in films cooled from the isotropic melt. We discuss the relationship between thermal stability and high carrier mobility values in terms of the interplay between long-range molecular order and increased π-π interactions between molecular pairs in the FPPTB film.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom