z-logo
open-access-imgOpen Access
Making Silicone Rubber Highly Resistant to Bacterial Attachment Using Thiol-ene Grafting
Author(s) -
E. Peter Magennis,
Andrew L. Hook,
Paul Williams,
Morgan R. Alexander
Publication year - 2016
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.6b10986
Subject(s) - polydimethylsiloxane , materials science , biofilm , silicone rubber , silicone , grafting , elastomer , polymer , natural rubber , ene reaction , click chemistry , biofouling , nanotechnology , chemical engineering , polymer chemistry , bacteria , composite material , organic chemistry , chemistry , biochemistry , membrane , biology , engineering , genetics
Biomedical devices are indispensable in modern medicine yet offer surfaces that promote bacterial attachment and biofilm formation, resulting in acute and chronic healthcare-associated infections. We have developed a simple method to graft acrylates to silicone rubber, polydimethylsiloxane (PDMS), a commonly used device material that is often colonized by bacteria. We demonstrate a novel method whereby nontoxic bacteria attachment-resistant polymers can be readily grafted from and grafted to the surface using thiol-ene chemistry, substantially reducing bacterial colonization. With use of this approach, bacterial biofilm coverage can be reduced by 99% compared with standard PDMS in an in vitro assay. This grafting approach offers significant advantages over commonly used physisorbed coatings, especially in areas of high shear or mechanical stress. Furthermore, the approach is versatile such that the grafted material properties can be tailored for the desired final application.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom