Atomic-Scale Quantitative Analysis of Lattice Distortions at Interfaces of Two-Dimensionally Sr-Doped La2CuO4 Superlattices
Author(s) -
Yi Wang,
Federico Baiutti,
Giuliano Gregori,
G. Cristiani,
Ute Salzberger,
Г. Логвенов,
Joachim Maier,
Peter A. van Aken
Publication year - 2016
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.5b12813
Subject(s) - materials science , doping , superlattice , atomic units , lattice (music) , scale (ratio) , condensed matter physics , analytical chemistry (journal) , chemistry , crystallography , optoelectronics , physics , quantum mechanics , acoustics , chromatography
Using spherical aberration corrected high-resolution and analytical scanning transmission electron microscopy, we have quantitatively studied the lattice distortion and the redistribution of charges in two-dimensionally strontium (Sr)-doped La2CuO4 superlattices, in which single LaO planes are periodically replaced by SrO planes. As shown previously, such structures show Tc up to 35 K as a consequence of local charge accumulation on both sides of the nominal SrO planes position. This is caused by two distinct mechanisms of doping: heterogeneous doping at the downward side of the interface (space-charge effect) and "classical" homogeneous doping at the upward side. The comparative chemical and atomic-structural analyses reveal an interrelation between local CuO6 octahedron distortions, hole spatial distribution, and chemical composition. In particular we observe an anomalous expansion of the apical oxygen-oxygen distance in the heterogeneously doped (space-charge) region, and a substantial shrinkage of the apical oxygen-oxygen distance in the homogeneously doped region. Such findings are interpreted in terms of different Jahn-Teller effects occurring at the two interface sides (downward and upward).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom