Correction to “Photocatalyzed Reduction of Bicarbonate to Formate: Effect of ZnS Crystal Structure and Positive Hole Scavenger”
Author(s) -
Daniel P. Leonard,
Hanqing Pan,
Michael D. Heagy
Publication year - 2016
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.5b12022
Subject(s) - citation , notice , computer science , world wide web , nanotechnology , library science , information retrieval , materials science , political science , law
Zinc sulfide is a promising catalyst due to its abundance, low cost, low toxicity and conduction band position that enables the photoreduction of CO2 to formic acid. This study is the first to examine experimentally the photocatalytic differences between wurtzite and sphalerite under the parameters of size (micrometer and nanoscale), crystal lattice, surface area, and band gap on productivity in the photoreduction of HCO3 −. These photochemical experiments were conducted under air mass coefficient zero (AM 0) and AM 1.5 solar simulation conditions. We observed little to no formate production under AM 1.5, but found linear formate production as a function of time using AM 0 conditions. Compared to earlier reports involving bubbled CO2 in the presence of bicarbonate, our results point to bicarbonate as the species undergoing reduction. Also investigated are the effects of three hydroxylic positive hole scavengers, ethylene glycol, propan-2-ol (isopropyl alcohol, IPA) and glycerol on the reduction of HCO3 −. Glycerol, a green solvent derived from vegetable oil, greatly improved the apparent quantum efficiency of the photocatalytic reduction.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom