Optimizing the Mass-Specific Activity of Bilirubin Oxidase Adlayers through Combined Electrochemical Quartz Crystal Microbalance and Dual Polarization Interferometry Analyses
Author(s) -
Trevor McArdle,
Thomas P. McNamara,
Fan Fei,
Kulveer Singh,
Christopher F. Blanford
Publication year - 2015
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.5b07290
Subject(s) - quartz crystal microbalance , adsorption , materials science , bilirubin oxidase , analytical chemistry (journal) , electrochemistry , polarization (electrochemistry) , enzyme kinetics , electrode , chemical engineering , catalysis , chromatography , chemistry , organic chemistry , active site , engineering
Two surface analysis techniques, dual polarization interferometry (DPI) and analysis by an electrochemical quartz crystal microbalance with dissipation capability (E-QCM-D), were paired to find the deposition conditions that give the highest and most stable electrocatalytic activity per adsorbed mass of enzyme. Layers were formed by adsorption from buffered solutions of bilirubin oxidase from Myrothecium verrucaria at pH 6.0 to planar surfaces, under high enzyme loading (≥1 mg mL(-1)) for contact periods of up to 2 min. Both unmodified and carboxylate-functionalized gold-coated sensors showed that a deposition solution concentration of 10-25 mg mL(-1) gave the highest activity per mass of adsorbed enzyme with an effective catalytic rate constant (k(cat)) of about 60 s(-1). The densification of adsorbed layers observed by DPI correlated with reduced bioactivity observed by parallel E-QCM-D measurements. Postadsorption changes in thickness and density observed by DPI were incorporated into Kelvin-Voigt models of the QCM-D response. The modeled response matched experimental observations when the adlayer viscosity tripled after adsorption.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom