z-logo
open-access-imgOpen Access
Design of Multimodal Absorption in the Mid-IR: A Metal Dielectric Metal Approach
Author(s) -
Nelson W. PechMay,
Tobias Lauster,
Markus Retsch
Publication year - 2021
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.0c18160
Subject(s) - materials science , fabrication , absorptance , optoelectronics , plasmon , dielectric , polariton , resonator , absorption (acoustics) , optics , physics , medicine , alternative medicine , pathology , composite material , reflectivity
Specific control on the mid-infrared (mid-IR) emission properties is attracting increasing attention for thermal camouflage and passive cooling applications. Metal-dielectric-metal (MDM) structures are well known to support strong magnetic polariton resonances in the optical and near-infrared range. We extend the current understanding of such an MDM structure by specifically designing Au disc arrays on top of ZnS-Au-Si substrates and pushing their resonances to the mid-IR regime. Therefore, we combine fabrication via lift-off photolithography with the finite element method and an inductance-capacitance model. With this combination of techniques, we demonstrate that the magnetic polariton resonance of the first order strongly depends on the individual disc diameter. Furthermore, the fabrication of multiple discs within one unit cell allows a linear combination of the fundamental resonances to conceive broadband absorptance. Quite importantly, even in mixed resonator cases, the absorptance spectra can be fully described by a superposition of the individual disc properties. Our contribution provides rational guidance to deterministically design mid-IR emitting materials with specific narrow- or broadband properties.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom