Comprehensive Optical Strain Sensing Through the Use of Colloidal Quantum Dots
Author(s) -
Michael Sherburne,
Candice R. Roberts,
John S. Brewer,
Thomas Weber,
Tod Laurvick,
Hengky Chandrahalim
Publication year - 2020
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.0c12110
Subject(s) - materials science , quantum dot , strain (injury) , nanotechnology , colloid , optoelectronics , chemical engineering , medicine , engineering
The adaptation of colloidal quantum dots loaded within a polymer for use in nondestructive testing can be used as an optical strain gauge due to the nanomaterial's strain sensing properties. In this paper, we utilized InP/ZnS colloidal quantum dots loaded within a polymer matrix applied onto the surface of a dog-bone foil precoated with an epoxy. By employing an empirical formula and a calibration factor, there is a propinquity between both the calculated optical strain and mechanical stress-strain reference data. Fluctuations are observed, which may be due to both additional strain responses not seen by the mechanical data and quantum dot blinking. These results and methods show the applied use of this novel optical nondestructive testing technique for a variety of structures, especially for structures that operate in harsh environments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom