Fast Charge Transfer across the Li7La3Zr2O12 Solid Electrolyte/LiCoO2 Cathode Interface Enabled by an Interphase-Engineered All-Thin-Film Architecture
Author(s) -
Jordi Sastre,
Xubin Chen,
Abdessalem Aribia,
Ayodhya N. Tiwari,
Yaroslav E. Romanyuk
Publication year - 2020
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.0c09777
Subject(s) - materials science , electrolyte , cathode , ionic conductivity , lithium (medication) , anode , chemical engineering , analytical chemistry (journal) , electrode , electrical engineering , chemistry , medicine , chromatography , endocrinology , engineering
Lithium garnet Li 7 La 3 Zr 2 O 12 (LLZO) is being investigated as a potential solid electrolyte for next-generation solid-state batteries owing to its high ionic conductivity and electrochemical stability against metallic lithium and high potential cathodes. While the LLZO/Li metal anode interface has been thoroughly investigated to achieve almost negligible interface resistances, the LLZO/cathode interface still suffers from high interfacial resistances mainly due to the high-temperature sintering required for proper ceramic bonding. In this work, the LLZO solid electrolyte/LiCoO 2 (LCO) cathode interface is investigated in an all-thin-film model system. This architecture provides an easy access to the interface for in situ and ex situ characterization, allowing one to identify the degradation processes taking place under high-temperature cosintering and to test solutions such as interface modifications. Introducing an in situ-lithiated Nb 2 O 5 diffusion barrier at the interface, we were able to lower the LLZO/LCO charge transfer resistance to about 50 Ω cm 2 , a 3-fold reduction with respect to previously reported values. The low interfacial resistance combined with the high conductance through the LLZO thin-film electrolyte allows one to investigate the charge transfer at high charge-discharge rates, unlike in bulk systems. At 1C, discharge capacities of about 140 mA h g -1 were measured, and at 10C, 60% of the theoretical capacity was retained with a cycle life over 100 cycles. Besides the role of this architecture in the interface investigation, this work also constitutes a milestone in the development of thin-film solid-state batteries with higher power densities.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom