Fused Metalloporphyrin Thin Film with Tunable Porosity via Chemical Vapor Deposition
Author(s) -
Kamal Baba,
Giuseppe Bengasi,
François Loyer,
João Paulo Cosas Fernandes,
Dana El Assad,
Olivier De Castro,
Nicolas D. Boscher
Publication year - 2020
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.0c09630
Subject(s) - porphyrin , materials science , thin film , porosity , mesoporous material , chemical vapor deposition , deposition (geology) , catalysis , chemical engineering , chloride , photochemistry , organic chemistry , nanotechnology , composite material , chemistry , metallurgy , paleontology , sediment , engineering , biology
Porous and highly conjugated multiply fused porphyrin thin films are prepared from a fast and single-step chemical vapor deposition approach. While the solution-based coupling of porphyrins is usually undertaken at room temperature, the gas phase reaction of nickel(II) 5,15-(diphenyl)porphyrin and iron(III) chloride (FeCl 3 ) is investigated for temperatures as high as 200 °C. Helium ion and atomic force microscopy, supported by weight and thickness measurements, shows a drastic decrease of the fused porphyrin thin film's density accompanied by the formation of a mesoporous morphology upon increase of the reaction temperature. The increase of the film's porosity is attributed to formation of a greater amount of HCl (originated from both the oxidative coupling and chlorination reactions) and the release of gaseous FeCl 3 byproducts, i.e., Cl 2 , at higher deposition temperatures. In addition, high resolution mass spectrometry reveals that increase of the reaction temperature promotes a higher degree of conjugation of the fused porphyrins chains, which ensures that high electronic conductivities are maintained along with high porosity. The method reported herein could enable the engineering of fused porphyrin thin films in sensing and catalytic devices.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom