Machine-Washable Conductive Silk Yarns with a Composite Coating of Ag Nanowires and PEDOT:PSS
Author(s) -
Byungil Hwang,
Anja Lund,
Yuan Tian,
Sozan Darabi,
Christian Müller
Publication year - 2020
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.0c04316
Subject(s) - materials science , pedot:pss , composite material , nanowire , coating , composite number , yarn , textile , electrical conductor , conductive polymer , silk , polymer , nanotechnology
Electrically conducting fibers and yarns are critical components of future wearable electronic textile (e-textile) devices such as sensors, antennae, information processors, and energy harvesters. To achieve reliable wearable devices, the development of robust yarns with a high conductivity and excellent washability is urgently needed. In the present study, highly conductive and machine-washable silk yarns were developed utilizing a Ag nanowire and PEDOT:PSS composite coating. Ag nanowires were coated on the silk yarn via a dip-coating process followed by coating with the conjugated polymer:polyelectrolyte complex PEDOT:PSS. The PEDOT:PSS covered the Ag nanowire layers while electrostatically binding to the silk, which significantly improved the robustness of the yarn as compared with the Ag nanowire-coated reference yarns. The fabricated conductive silk yarns had an excellent bulk conductivity of up to ∼320 S/cm, which is largely retained even after several cycles of machine washing. To demonstrate that these yarns can be incorporated into e-textiles, the conductive yarns were used to construct an all-textile out-of-plane thermoelectric device and a Joule heating element in a woven heating fabric.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom