Durable, Stable, and Functional Nanopores Decorated by Self-Assembled Dipeptides
Author(s) -
Abeer Karmi,
Gowri Priya Sakala,
Dvir Rotem,
Meital Reches,
Danny Porath
Publication year - 2020
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.0c00062
Subject(s) - nanopore , materials science , moiety , surface modification , wetting , coating , dipeptide , nanotechnology , molecule , peptide , chemical engineering , organic chemistry , chemistry , composite material , biochemistry , engineering
Nanopores have become an important tool for the detection and analysis of molecules at the single-molecule level. Surface modification of solid-state nanopores can improve their durability and efficiency. Peptides are ideal for surface modifications as they allow tailoring of multiple properties by a rational design of their sequence. Here, silicon nitride nanopores were coated by a dipeptide layer where a l-3,4-dihydroxyphenylalanine (DOPA) residue is the anchoring element and the other amino acid moiety is the functional element. DOPA binds tightly to many types of surfaces and allows a one-step functionalization of surfaces by simple immersion. As a result, the lifetime of coated nanopores increased from hours to months and the current-stability has significantly improved with respect to uncoated pores. This improvement is achieved by controlling the surface wettability and charge. Peptide-coated nanopores can be utilized as sensitive sensors that can be adjusted based on the choice of the functional moiety of the coated peptide. In addition, the coating slows down dsDNA translocation because of the DNA interaction with the pore coating.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom