Polysilicon Passivating Contacts for Silicon Solar Cells: Interface Passivation and Carrier Transport Mechanism
Author(s) -
Wenzhu Liu,
Xinbo Yang,
Jingxuan Kang,
Shuai Li,
Lujia Xu,
Song Zhang,
Hang Xu,
Jun Peng,
Feng Xie,
JuiHan Fu,
Kai Wang,
Jiang Liu,
Areej Alzahrani,
Stefaan De Wolf
Publication year - 2019
Publication title -
acs applied energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.833
H-Index - 36
ISSN - 2574-0962
DOI - 10.1021/acsaem.8b02149
Subject(s) - passivation , materials science , annealing (glass) , oxide , silicon , acceptor , optoelectronics , quantum tunnelling , forming gas , nanotechnology , layer (electronics) , metallurgy , condensed matter physics , physics
Polysilicon passivating contacts, consisting of a stack of tunnel-oxide and doped polysilicon layers, can simultaneously provide excellent surface passivation and low contact resistivity for silicon solar cells. Nevertheless, the microscopic interfacial characteristics of such contacts are not yet fully understood. In this work, by investigating the surface passivation evolution of polysilicon passivating contacts under increasing annealing temperatures, we unveil these characteristics. Before annealing, we find that the Si and O atoms within the tunnel-oxide layer are mostly unsaturated, whereas the O atoms introduce acceptor-like defects. These defects cause Fermi-level pinning and high carrier recombination. During annealing, we identify two distinct chemical passivation regimes driven by surface hydrogenation and oxidation. We attribute the excellent chemical passivation activated by high-temperature annealing (similar to 850 degrees C) mainly to the tunnel oxide reconstruction, which effectively reduces the acceptor-like state density. During the oxide reconstruction, we also find that subnanometer pits (rather than pinholes) are formed in the oxide. A combination of experimental and theoretical investigations demonstrates these subnanometer pits provide excellent surface passivation and efficient tunneling for majority carriers.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom