Dynamics of Supramolecular Self-Healing Recovery in Extension
Author(s) -
Zachary R. Hinton,
Aamir Shabbir,
Nicolas J. Alvarez
Publication year - 2019
Publication title -
macromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.994
H-Index - 313
eISSN - 1520-5835
pISSN - 0024-9297
DOI - 10.1021/acs.macromol.8b02423
Subject(s) - self healing , context (archaeology) , self healing material , supramolecular polymers , supramolecular chemistry , polymer , materials science , dynamics (music) , creep , computer science , nanotechnology , chemistry , physics , composite material , molecule , medicine , paleontology , alternative medicine , organic chemistry , pathology , acoustics , biology
Self-healing materials are prized for their ability to recover mechanical properties after damage. Supramolecular polymer networks have been demonstrated to have the ability to recover without the need for extraneous material components or the use of external stimuli. Surprisingly, there is little quantitative measure of self-healing dynamics and recovery. In this work, we develop a tool using a filament stretching rheometer to probe self-healing dynamics in creep and constant rate of extension. We experimentally determine the effect of process time scales, τH and τW, on the degree of recovery for two distinct supramolecular architectures. These results are put into the context of molecular time scales such as disengagement time, the Rouse time, and bond lifetime. We find that entangled polymers undergo sequential healing, whereby at short times, dynamics are dominated by entanglement recovery followed by recovery of associations. For an unentangled polymer, recovery is seemingly dominated by association ...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom