Thickness-Dependent Swelling Behavior of Vapor-Deposited Smart Polymer Thin Films
Author(s) -
Fabian Muralter,
Alberto Perrotta,
Anna Maria Coclite
Publication year - 2018
Publication title -
macromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.994
H-Index - 313
eISSN - 1520-5835
pISSN - 0024-9297
DOI - 10.1021/acs.macromol.8b02120
Subject(s) - swelling , materials science , polymer , thin film , composite material , chemical engineering , polymer chemistry , nanotechnology , engineering
In this contribution, the temperature-dependent swelling behavior of vapor-deposited smart polymer thin films is shown to depend on cross-linking and deposited film thickness. Smart polymers find application in sensor and actuator setups and are mostly fabricated on delicate substrates with complex nanostructures that need to be conformally coated. As initiated chemical vapor deposition (iCVD) meets these specific requirements, the present work concentrates on temperature-dependent swelling behavior of iCVD poly( N -isopropylacrylamide) thin films. The transition between swollen and shrunken state and the corresponding lower critical solution temperature (LCST) was investigated by spectroscopic ellipsometry in water. The films' density in the dry state evaluated from X-ray reflectivity could be successfully correlated to the position of the LCST in water and was found to vary between 1.1 and 1.3 g/cm 3 in the thickness range 30-330 nm. This work emphasizes the importance of insights in both the deposition process and mechanisms during swelling of smart polymeric structures.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom