z-logo
open-access-imgOpen Access
Bottlebrush Copolymer Additives for Immiscible Polymer Blends
Author(s) -
Adeline Huizhen Mah,
Pantea Afzali,
Luqing Qi,
Stacy L. Pesek,
Rafael Verduzco,
Gila E. Stein
Publication year - 2018
Publication title -
macromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.994
H-Index - 313
eISSN - 1520-5835
pISSN - 0024-9297
DOI - 10.1021/acs.macromol.8b00719
Subject(s) - miscibility , copolymer , methyl methacrylate , materials science , polymer , polystyrene , phase (matter) , styrene , side chain , interphase , polymer blend , polymer chemistry , chemical engineering , optical microscope , composite material , chemistry , scanning electron microscope , organic chemistry , biology , engineering , genetics
Thin films of immiscible polymer blends will undergo phase separation into large domains, but this behavior can be suppressed with additives that accumulate and adhere at the polymer/polymer interface. Herein, we describe the phase behavior of polystyrene/poly(methyl methacrylate) (PS/PMMA) blends with 20 vol % of a bottlebrush additive, where the bottlebrush has poly(styrene-r-methyl methacrylate) side chains with 61 mol % styrene. All blends are cast into films and thermally annealed above the glass transition temperature. The phase-separated structures are measured as a function of time with atomic force microscopy and optical microscopy. We demonstrate that subtle changes in bottlebrush architecture and homopolymer chain lengths can have a large impact on phase behavior, domain coarsening, and domain continuity. The bottlebrush additives are miscible with PS under a broad range of conditions. However, these additives are only miscible with PMMA when the bottlebrush backbones are short or when the PMMA...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom