z-logo
open-access-imgOpen Access
Effect of Monomer Solubility on the Evolution of Copolymer Morphology during Polymerization-Induced Self-Assembly in Aqueous Solution
Author(s) -
Amy A. Cockram,
Thomas J. Neal,
Matthew J. Derry,
Oleksandr O. Mykhaylyk,
Neal S. J. Williams,
Martin Murray,
Simon Emmett,
Steven P. Armes
Publication year - 2017
Publication title -
macromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.994
H-Index - 313
eISSN - 1520-5835
pISSN - 0024-9297
DOI - 10.1021/acs.macromol.6b02309
Subject(s) - copolymer , monomer , polymer chemistry , aqueous solution , polymerization , morphology (biology) , solubility , chemistry , polymer science , materials science , chemical engineering , polymer , organic chemistry , engineering , genetics , biology
Polymerization-induced self-assembly (PISA) has become a widely used technique for the rational design of diblock copolymer nano-objects in concentrated aqueous solution. Depending on the specific PISA formulation, reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization typically provides straightforward access to either spheres, worms, or vesicles. In contrast, RAFT aqueous emulsion polymerization formulations often lead to just kinetically-trapped spheres. This limitation is currently not understood, and only a few empirical exceptions have been reported in the literature. In the present work, the effect of monomer solubility on copolymer morphology is explored for an aqueous PISA formulation. Using 2-hydroxybutyl methacrylate (aqueous solubility = 20 g dm -3 at 70 °C) instead of benzyl methacrylate (0.40 g dm -3 at 70 °C) for the core-forming block allows access to an unusual "monkey nut" copolymer morphology over a relatively narrow range of target degrees of polymerization when using a poly(methacrylic acid) RAFT agent at pH 5. These new anisotropic nanoparticles have been characterized by transmission electron microscopy, dynamic light scattering, aqueous electrophoresis, shear-induced polarized light imaging (SIPLI), and small-angle X-ray scattering.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom