z-logo
open-access-imgOpen Access
Unexpected Switching of the Photogelation Chemistry When Cross-Linking Poly(2-oxazoline) Copolymers
Author(s) -
Tim R. Dargaville,
Kathleen Lava,
Bart Verbraeken,
Richard Hoogenboom
Publication year - 2016
Publication title -
macromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.994
H-Index - 313
eISSN - 1520-5835
pISSN - 0024-9297
DOI - 10.1021/acs.macromol.6b00167
Subject(s) - oxazoline , copolymer , polymer chemistry , chemistry , monomer , alkyl , self healing hydrogels , kinetics , polymer , organic chemistry , catalysis , physics , quantum mechanics
The photohydrogelation reaction of functional poly(2-oxazoline)s can be significantly accelerated by the presence of weak hydrophobic interactions. Here we describe the synthesis and cross-linking of water-soluble poly(2-oxazoline) copolymers containing vinyl groups in the side chains by copolymerizing 2-methyl-2-oxazoline and 2-undecenyl-2-oxazoline or 2-(3-butenyl)-2-oxazoline. An improved synthetic pathway to the 2-(3-butenyl)-2-oxazoline monomer based on α-deprotonation of 2-methyl-2-oxazoline is also included. When exposed to radical thiol–ene conditions in the presence of dithiothreitol in water, all of the copolymers produced homogeneous hydrogels, but the nature of the copolymers greatly influenced the cross-linking kinetics. The polymers with the vinyl groups on short alkyl chains cured slowly, and the physical properties of the hydrogels were strongly dependent on the molar ratio of thiol and ene groups. Conversely, the polymers with the vinyl groups on long alkyl chains cured extremely rapidly, whereby the process was nearly independent of the thiol concentration. A model of hydrophobic interactions actually enhancing cure kinetics, but at the expense of the thiol–ene reaction, is proposed

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom