z-logo
open-access-imgOpen Access
Origin of Small-Angle Scattering from Contrast-Matched Nanoparticles: A Study of Chain and Filler Structure in Polymer Nanocomposites
Author(s) -
Amélie Banc,
Anne-Caroline Genix,
Christelle Dupas,
Michael Sztucki,
Ralf Schweins,
MarieSousai Appavou,
Julian Oberdisse
Publication year - 2015
Publication title -
macromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.994
H-Index - 313
eISSN - 1520-5835
pISSN - 0024-9297
DOI - 10.1021/acs.macromol.5b01424
Subject(s) - radius of gyration , polymer , materials science , small angle x ray scattering , colloidal silica , small angle neutron scattering , scattering , neutron scattering , nanocomposite , nanoparticle , volume fraction , chemical engineering , static light scattering , polymer nanocomposite , polymer chemistry , composite material , dynamic light scattering , nanotechnology , optics , physics , coating , engineering
The conformation of poly(ethyl methacrylate) chains in silica–latex nanocomposites has been studied under zero average contrast conditions (ZAC) using small-angle neutron scattering (SANS). Samples have been prepared by drying colloidal suspensions of silica and polymer nanoparticles (NPs) followed by thermal annealing, for two different silica NPs (radius of 5 and 15 nm) and two chain molecular weights (17 and 100 kg/mol). By appropriate mixing of hydrogenated and deuterated polymer, chain scattering contrast is introduced, and in principle silica scattering suppressed. The silica structure consisting mostly of small fractal aggregates is characterized by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) on the same samples. The measurement of the chain structure by SANS, however, is perturbed by unwanted silica contributions, as often reported in the literature. Here, the contribution of contrast-matched silica is evidenced as a function of system parameters, namely chain mass, silica size, and volume fraction, and a model rationalizing these contributions for the first time is proposed. On the basis of a statistical analysis, a nanometer-thick polymer shell surrounding silica NPs is shown to create contrast, which is presumably maintained by the reduced mobility of polymer close to interfaces or attractive polymer–silica interactions. This shell is proven to be quantitatively important only for the smallest silica NPs. Finally, the pure polymer scattering can be isolated, and the polymer radius of gyration is found to be independent of filler content and NP size

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom