Active Topological Glass Confined within a Spherical Cavity
Author(s) -
Iurii Chubak,
Stanard Mebwe Pachong,
Kurt Kremer,
Christos N. Likos,
Jan Smrek
Publication year - 2022
Publication title -
macromolecules
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.994
H-Index - 313
eISSN - 1520-5835
pISSN - 0024-9297
DOI - 10.1021/acs.macromol.1c02471
Subject(s) - topology (electrical circuits) , relaxation (psychology) , nucleus , active matter , physics , chemical physics , materials science , molecular physics , biology , mathematics , combinatorics , neuroscience , microbiology and biotechnology
We study active topological glass under spherical confinement, allowing us to exceed the chain lengths simulated previously and determine the critical exponents of the arrested conformations. We find a previously unresolved "tank-treading" dynamic mode of active segments along the ring contour. This mode can enhance active-passive phase separation in the state of active topological glass when both diffusional and conformational relaxation of the rings are significantly suppressed. Within the observational time, we see no systematic trends in the positioning of the separated active domains within the confining sphere. The arrested state exhibits coherent stochastic rotations. We discuss possible connections of the conformational and dynamic features of the system to chromosomes enclosed in the nucleus of a living cell.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom