z-logo
open-access-imgOpen Access
Integrated Univariate, Multivariate, and Correlation-Based Network Analyses Reveal Metabolite-Specific Effects on Bacterial Growth and Biofilm Formation in Necrotizing Soft Tissue Infections
Author(s) -
Muhammad Afzal,
Edoardo Saccenti,
Martin Bruun Madsen,
Marco Bo Hansen,
Ole Hyldegaard,
Steinar Skrede,
Vítor A. P. Martins dos Santos,
AnorrbyTeglund,
Mattias Svensson
Publication year - 2019
Publication title -
journal of proteome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.644
H-Index - 161
eISSN - 1535-3907
pISSN - 1535-3893
DOI - 10.1021/acs.jproteome.9b00565
Subject(s) - metabolite , metabolomics , biofilm , biology , microbiology and biotechnology , biochemistry , bioinformatics , bacteria , genetics
Necrotizing soft-tissue infections (NSTIs) have multiple causes, risk factors, anatomical locations, and pathogenic mechanisms. In patients with NSTI, circulating metabolites may serve as a substrate having impact on bacterial adaptation at the site of infection. Metabolic signatures associated with NSTI may reveal the potential to be useful as diagnostic and prognostic markers and novel targets for therapy. This study used untargeted metabolomics analyses of plasma from NSTI patients ( n = 34) and healthy (noninfected) controls ( n = 24) to identify the metabolic signatures and connectivity patterns among metabolites associated with NSTI. Metabolite-metabolite association networks were employed to compare the metabolic profiles of NSTI patients and noninfected surgical controls. Out of 97 metabolites detected, the abundance of 33 was significantly altered in NSTI patients. Analysis of metabolite-metabolite association networks showed a more densely connected network: specifically, 20 metabolites differentially connected between NSTI and controls. A selected set of significantly altered metabolites was tested in vitro to investigate potential influence on NSTI group A streptococcal strain growth and biofilm formation. Using chemically defined media supplemented with the selected metabolites, ornithine, ribose, urea, and glucuronic acid, revealed metabolite-specific effects on both bacterial growth and biofilm formation. This study identifies for the first time an NSTI-specific metabolic signature with implications for optimized diagnostics and therapies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom