z-logo
open-access-imgOpen Access
Time-Resolved Kinetic Chirped-Pulse Rotational Spectroscopy in a Room-Temperature Flow Reactor
Author(s) -
Daniel P. Zaleski,
Lawrence B. Harding,
Stephen J. Klippenstein,
Branko Ruščić,
Kirill Prozument
Publication year - 2017
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/acs.jpclett.7b02864
Subject(s) - chemistry , spectroscopy , branching (polymer chemistry) , photodissociation , population , chemical kinetics , chemical reaction , kinetics , reaction dynamics , rotational temperature , analytical chemistry (journal) , photochemistry , molecule , organic chemistry , physics , demography , quantum mechanics , sociology
Chirped-pulse Fourier transform millimeter-wave spectroscopy is a potentially powerful tool for studying chemical reaction dynamics and kinetics. Branching ratios of multiple reaction products and intermediates can be measured with unprecedented chemical specificity; molecular isomers, conformers, and vibrational states have distinct rotational spectra. Here we demonstrate chirped-pulse spectroscopy of vinyl cyanide photoproducts in a flow tube reactor at ambient temperature of 295 K and pressures of 1-10 μbar. This in situ and time-resolved experiment illustrates the utility of this novel approach to investigating chemical reaction dynamics and kinetics. Following 193 nm photodissociation of CH 2 CHCN, we observe rotational relaxation of energized HCN, HNC, and HCCCN photoproducts with 10 μs time resolution and sample the vibrational population distribution of HCCCN. The experimental branching ratio HCN/HCCCN is compared with a model based on RRKM theory using high-level ab initio calculations, which were in turn validated by comparisons to Active Thermochemical Tables enthalpies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom