Controlling Structural Transitions in AuAg Nanoparticles through Precise Compositional Design
Author(s) -
Anna L. Gould,
Kevin Rossi,
C. Richard A. Catlow,
Francesca Baletto,
Andrew J. Logsdail
Publication year - 2016
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
ISSN - 1948-7185
DOI - 10.1021/acs.jpclett.6b02181
Subject(s) - nanoparticle , symmetry (geometry) , nanotechnology , chemical physics , materials science , octahedron , bespoke , chemistry , crystallography , crystal structure , geometry , law , mathematics , political science
We present a study of the transitional pathways between high-symmetry structural motifs for AgAu nanoparticles, with a specific focus on controlling the energetic barriers through chemical design. We show that the barriers can be altered by careful control of the elemental composition and chemical arrangement, with core@shell and vertex-decorated arrangements being specifically influential on the barrier heights. We also highlight the complexity of the potential and free energy landscapes for systems where there are low-symmetry geometric motifs that are energetically competitive to the high-symmetry arrangements. In particular, we highlight that some core@shell arrangements preferentially transition through multistep restructuring of low-symmetry truncated octahedra and rosette-icosahedra, instead of via the more straightforward square-diamond transformations, due to lower energy barriers and competitive energetic minima. Our results have promising implications for the continuing efforts in bespoke nanoparticle design for catalytic and plasmonic applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom