z-logo
open-access-imgOpen Access
Preferential Isomer Formation Observed in H3+ + CO by Crossed Beam Imaging
Author(s) -
Eduardo Carrascosa,
Martin A. Kainz,
Martin Stei,
Roland Wester
Publication year - 2016
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/acs.jpclett.6b01028
Subject(s) - excitation , proton , atomic physics , chemistry , beam (structure) , product (mathematics) , collision , thermal , internal energy , reaction dynamics , analytical chemistry (journal) , physics , thermodynamics , nuclear physics , optics , molecule , geometry , quantum mechanics , mathematics , computer security , chromatography , computer science , organic chemistry
The proton transfer reaction H3(+) + CO is one of the cornerstone chemical processes in the interstellar medium. Here, the dynamics of this reaction have been investigated using crossed beam velocity map imaging. Formyl product cations are found to be predominantly scattered into the forward direction irrespective of the collision energy. In this process, a high amount of energy is transferred to internal product excitation. By fitting a sum of two distribution functions to the measured internal energy distributions, the product isomer ratio is extracted. A small HOC(+) fraction is obtained at a collision energy of 1.8 eV, characterized by an upper limit of 24% with a confidence level of 84%. At lower collision energies, the data indicate purely HCO(+) formation. Such low values are unexpected given the previously predicted efficient formation of both HCO(+) and HOC(+) isomers for thermal conditions. This is discussed in light of the direct reaction dynamics that are observed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom