The Melting Temperature of Liquid Water with the Effective Fragment Potential
Author(s) -
Kurt R. Brorsen,
Soohaeng Yoo Willow,
Sotiris S. Xantheas,
Mark S. Gordon
Publication year - 2015
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/acs.jpclett.5b01702
Subject(s) - fragment (logic) , liquid water , melting temperature , materials science , thermodynamics , environmental science , chemistry , composite material , physics , computer science , programming language
The direct simulation of the solid-liquid water interface with the effective fragment potential (EFP) via the constant enthalpy and pressure (NPH) ensemble was used to estimate the melting temperature (T(m)) of ice-I(h). Initial configurations and velocities, taken from equilibrated constant pressure and temperature (NPT) simulations at P = 1 atm and T = 305 K, 325 K and 399 K, respectively, yielded corresponding T(m) values of 378 ± 16 K, 382 ± 14 K and 384 ± 15 K. These estimates are consistently higher than experiment, albeit to the same degree as previously reported estimates using density functional theory (DFT)-based Born-Oppenheimer simulations with the Becke-Lee-Yang-Parr functional plus dispersion corrections (BLYP-D).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom