Can Organic Solar Cells Beat the Near-Equilibrium Thermodynamic Limit?
Author(s) -
Tanvi Upreti,
Constantin Tormann,
Martijn Kemerink
Publication year - 2022
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/acs.jpclett.2c01565
Subject(s) - thermalisation , non equilibrium thermodynamics , funnel , organic solar cell , chemical physics , thermodynamic equilibrium , anode , materials science , kinetic energy , photovoltaic system , chemistry , atomic physics , physics , thermodynamics , electrode , classical mechanics , polymer , ecology , organic chemistry , biology , composite material
Despite an impressive increase over the past decade, experimentally determined power conversion efficiencies of organic photovoltaic cells still fall considerably below the theoretical upper bound for near-equilibrium solar cells. Even in otherwise optimized devices, a prominent yet incompletely understood loss channel is the thermalization of photogenerated charge carriers in the density of states that is broadened by energetic disorder. Here, we demonstrate by extensive numerical modeling how this loss channel can be mitigated in carefully designed morphologies. Specifically, we show how funnel-shaped donor- and acceptor-rich domains in the phase-separated morphology that are characteristic of organic bulk heterojunction solar cells can promote directed transport of positive and negative charge carriers toward the anode and cathode, respectively. We demonstrate that in optimized funnel morphologies this kinetic, nonequilibrium effect, which is boosted by the slow thermalization of photogenerated charges, allows one to surpass the near-equilibrium limit for the same material in the absence of gradients.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom