Significance of the Chemical Environment of an Element in Nonadiabatic Molecular Dynamics: Feature Selection and Dimensionality Reduction with Machine Learning
Author(s) -
Wei Bin How,
Bipeng Wang,
Weibin Chu,
Alexandre Tkatchenko,
Oleg V. Prezhdo
Publication year - 2021
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/acs.jpclett.1c03469
Subject(s) - hamiltonian (control theory) , molecular dynamics , excited state , curse of dimensionality , interatomic potential , computer science , dimensionality reduction , feature selection , energy minimization , algorithm , statistical physics , artificial intelligence , chemistry , physics , computational chemistry , quantum mechanics , mathematics , mathematical optimization
Using supervised and unsupervised machine learning (ML) on features generated from nonadiabatic (NA) molecular dynamics (MD) trajectories under the classical path approximation, we demonstrate that mutual information with the NA Hamiltonian can be used for feature selection and model simplification. Focusing on CsPbI 3 , a popular metal halide perovskite, we observe that the chemical environment of a single element is sufficient for predicting the NA Hamiltonian. The conclusion applies even to Cs, although Cs does not contribute to the relevant wave functions. Interatomic distances between Cs and I or Pb and the octahedral tilt angle are the most important features. We reduce a typical 360-parameter ML force-field model to just a 12-parameter NA Hamiltonian model, while maintaining a high NA-MD simulation quality. Because NA-MD is a valuable tool for studying excited state processes, overcoming its high computational cost through simple ML models will streamline NA-MD simulations and expand the ranges of accessible system size and simulation time.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom